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Abstract

Background: Assessing neighborhood environment in access to mammography remains a challenge when investigating its
contextual effect on breast cancer-related outcomes. Studies using different Geographic Information Systems (GIS)-based
measures reported inconsistent findings.

Methods: We compared GIS-based measures (travel time, service density, and a two-Step Floating Catchment Area method
[2SFCA]) of access to FDA-accredited mammography facilities in terms of their Spearman correlation, agreement (Kappa)
and spatial patterns. As an indicator of predictive validity, we examined their association with the odds of late-stage breast
cancer using cancer registry data.

Results: The accessibility measures indicated considerable variation in correlation, Kappa and spatial pattern. Measures
using shortest travel time (or average) and service density showed low correlations, no agreement, and different spatial
patterns. Both types of measures showed low correlations and little agreement with the 2SFCA measures. Of all measures,
only the two measures using 6-timezone-weighted 2SFCA method were associated with increased odds of late-stage breast
cancer (quick-distance-decay: odds ratio [OR] = 1.15, 95% confidence interval [CI] = 1.01–1.32; slow-distance-decay:
OR = 1.19, 95% CI = 1.03–1.37) after controlling for demographics and neighborhood socioeconomic deprivation.

Conclusions: Various GIS-based measures of access to mammography facilities exist and are not identical in principle and
their association with late-stage breast cancer risk. Only the two measures using the 2SFCA method with 6-timezone
weighting were associated with increased odds of late-stage breast cancer. These measures incorporate both travel barriers
and service competition. Studies may observe different results depending on the measure of accessibility used.
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Introduction

Breast cancer is an important public health issue and accounts

for about 28% of cancer incidence and 15% cancer mortality in

the United States [1]. Screening mammography reduces the risk of

breast cancer death by early detection [2]. Geographic barriers in

access to healthcare could significantly impact on population

health. In recent years, it has become common to investigate the

influence of geographic distribution of mammography service on

mammography screening use and stage at diagnosis of breast

cancer. However, findings from previous reports vary to a great

degree. Some studies, found that barriers in spatial accessibility to

mammography facilities increased the risk of non-adherence to

screening and/or stage at diagnosis of breast cancer [3,4,5,6,7,8],

but other studies did not [9,10,11]. Regardless of the limitations

and potential biases in study design and data collection,

inconsistency in these findings might result from the use of

varying spatial methods in assessing access to mammography. Few

studies have compared differences in Geographic Information

System (GIS)-based measures of accessibility.

Previous assessments of spatial accessibility to mammographic

service include neighborhood availability (or service density – the

number of facility per population) [3,4,5,9] and travel distance (or

travel time) to the nearest facility [10,11,12,13,14]. Service density

has been frequently used and is easy to compute. The use of a

road-network-based travel distance/time is becoming a popular

measure with the rapid development of available GIS techniques.

However, both of these two measures have limitations. The former

ignored the interaction between population and service facilities

across arbitrary neighborhood boundaries, while the latter does

not account for the competition among different service facilities

(demand) [15]. A gravity model overcomes both limitations

through integration of travel barriers and service competitions
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and has become an alternative approximation of spatial accessi-

bility to mammography services. Gravity models have been used

extensively by geographers, but have been underutilized by

epidemiologists. Two important gravity models are the Kernel

Density (KDE) [16] method and the two-step floating catchment

area (2SFCA) method [17]. The major limitation of the KDE

method is that it ignores travel barriers by using a straight line

Euclidean distance. The 2SFCA method uses the actual road

network distance, which is much closer to real-world situations.

Recently, a zonal- or continuous- weighting parameter was added

to this method which allowed for a distance-related decay. This

resulted in an enhanced two-step floating catchment area

(E2SFCA) method [18] and a Gaussian two-step floating

catchment area (G2SFCA) method [19]. More recently, the

2SFCA method was further improved to overcome the influences

of rural-urban difference or large irregular study area through

using varied catchment sizes [20] or aggregating small-area

2SFCA measures to larger neighborhoods [21]. Due to technical

difficulties in implementing, the 2SFCA method is still underuti-

lized in epidemiology.

In this study, we compared these three methods (nine GIS-

based measures) in assessing access to mammography facilities at

the block group-level in the St. Louis area. In a previous study, we

found the risk of advanced breast cancer was higher in the St.

Louis area than elsewhere in Missouri [22]. As an indicator of

predictive validity, we also compared the associations of these nine

measures with neighborhood risk of late-stage breast cancer after

adjusting for demographics and neighborhood socioeconomic

deprivation using cancer registry data.

Materials and Methods

Study Population
The study area includes St. Louis City and St. Louis County,

Missouri, that is located in the center of the greater St. Louis

Metropolitan area, covering 590 square miles including 1124

block groups according to the 2000 Census. There are 719,737

women living in both counties, 337,966 of which are age 40 and

above. Note that St. Louis City is its own county in Missouri. We

obtained 2002–2006 primary breast cancer incidence cases from

the Missouri Cancer Registry. Using a GIS, the address of breast

cancer cases was geocoded to corresponding Census block groups

and matched to U.S. Census 2000 TIGER/Line files. Breast

cancer stage was defined according to the AJCC staging system as

ductal/lobular carcinoma in situ (DCIS/LCIS, stage 0) and

invasive breast cancer (stages I, II, III and IV). The study

outcome was dichotomized as late-stage breast cancer (stages II–

IV) vs. early-stage breast cancer (stages 0-I). Age was categorized

as younger than 50 years, 50–64 years, and age 65 and above.

Race was grouped as non-Hispanic White, African American, and

Other. After excluding 62 ungeocoded cases and 148 cases with

missing stage, a total of 4205 breast cancer cases were included in

the analysis. This study was approved by Washington University’s

Institutional Review Board.

GIS-Based Measures in Assessing Spatial Accessibility to
Mammography Service

We identified the locations of all 53 U.S. Food and Drug

Administration (FDA)-accredited non-mobile mammography fa-

cilities during 1997–2001 in the study area from the FDA. The

address of the facilities was geocoded to obtain latitude and

longitude using ArcGIS (Version 9.3.1, ESRI inc., Redlands, CA).

Based on three GIS approaches, we calculated nine measures of

accessibility:

A) nearest facility:

(i) shortest travel time (DST),

(ii) average of first 5 shortest travel time (DST5);

B) (iii) service density (DES); and

C) Two-Step Floating Catchment Area (2SFCA) indices:

(iv) unweighted index (SAU),

(v) continuous-weighted index (SAC),

(vi) 3-timezone-quick weighted index (SA3Q),

(vii) 3-timezone-slow weighted index (SA3S),

(viii) 6-timezone-quick weighted index (SA6Q),

(ix) 6-timezone-slow weighted index (SA6S).

We restricted the background population to women age 40 and

above since screening mammography guidelines recommend

mammography use for this population [23,24].

A. Nearest facility (facilities). We calculated the shortest

travel time (DST) from the population-weighted centroid of each

block group to mammography facilities using ArcGIS Network

Analyst extension (Version 9.3.1, ESRI inc., Redlands, CA). We

also calculated the average shortest travel time to the first five

nearest facilities (DST5).

B. Service density. We calculated the service density (DES)

by dividing the total number of mammography machines at the

facilities that can be reached within 30 minutes (30-minute

network buffer) from each block group centroid by this block

group’s population of women age 40+.

Di~

P
j[tij

Mj

Pi

ð1Þ

Where Di represents the density of block group i; Mi is the

number of mammography machines at facility j; Pi represents the

women population age 40+ at block group i; tij is travel time (zone)

from census block group i to mammography facility j which can be

reached with 30 minutes from the block group i.
C. Two-Step Floating Catchment Area (2SFCA)

Method. We applied the 2SFCA method to compute a spatial

accessibility score for each Census block group. First, we

computed the network road travel time matrix between all

mammography facilities and all Census block group population-

weighted centroids using ArcGIS Network Analyst extension

(Version 9.3.1, ESRI inc., Redlands, CA). Maximum catchment

range was set to 30-minute travel time (driving) based on other

accessibility studies [17,18]. Second, we calculated the mammog-

raphy machine-to-population (women population age 40 and

above) of each mammography facility by dividing the number of

machines by the weighted population of all Census block groups

which centroids fall into the 30-minute catchment area of that

facility (Equation 2).

Rj~
MjP

i[tij
Pif (tij)

ð2Þ

Where Rj denotes the ratio of mammography machines to

population for facility j, while Mj is the number of mammography

machines at facility j; Pi is the population of block group i; f tij

� �
is

the weighting function; and tij is travel time (zone) from census

block group i to mammography facility j.
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Third, we calculated the spatial accessibility for each Census

block group (Equation 3).

Ai~
X

j[tij
Rjf (tij) ð3Þ

Where Aj denotes the spatial accessibility of census block group i.

We weighted the population and machine-to-population ratio

using a zonal Gaussian decay function which was thought of as an

appropriate weighting function regarding distance decay in the

zonal-weighted 2SFCA models [25] (Equation 4) and a continuous

Gaussian weighting function in the continuous weighted 2SFCA

model [19] (Equation 5).

f (tij)~e
{t2

ij

.
b

ð4Þ

f (tij)~
e
{0:5 tij

�
t0

� �2

{e{0:5

1{e{0:5
ð5Þ

Where b is the empirical parameter in the decay function; t0 is the

maximum catchment travel time (30 minutes in current study). In

addition, we also used the original unweighted 2SFCA model in

which f tij

� �
= 1.

Because it is unclear how the decay of the travel time affect our

findings, we used 3 time zones (per 10-minute travel time) quick-

decay (1.00, 0.51 and 0.07) and slow-decay (1.00, 0.75 and 0.32)

and 6 time zones (per 5-minute travel time) quick-decay (1.00,

0.82, 0.45, 0.17, 0.04 and 0.01) and slow-decay function

parameters (1.00, 0.96, 0.85, 0.70, 0.53 and 0.37) in the zonal-

weighted 2SFCA models as part of a sensitivity analysis. We

examined the locations of all mammography facilities and found a

slight change in the number of mammography facilities over time.

Nevertheless, to minimize the potential effect on our findings, we

Table 1. Characteristics of Census variables composing census block group socioeconomic (SES) deprivation index.

Domain Census Variable Factor Loading
Factor Scoring
Coefficient

Education

% total population with less than high school 0.46353 0.05951

% total population with a college degree 20.42384 0.01817

Occupation

% civilian labor force unemployed* 0.79788 0.20320

% White collar 1 20.46336 20.00944

Housing

% household (HH) rent 0.58504 0.05888

% vacant HH* 0.81785 0.16175

% HH with . = 1 person per room* 0.61979 0.10684

Median value of all owner-occupied HH, $ 20.19721 0.12412

% female headed HH with dependent children{ * 0.67542 0.10635

% HH on public assistance income* 0.81928 0.17055

% HH with no vehicle* 0.82504 0.15674

% HH with no kitchen 0.10527 20.12607

% HH with no phone* 0.63371 0.08719

% occupied HH with incomplete plumbing 0.20827 20.07152

Income and Poverty

Median family income, $ 20.42799 0.06314

% HH income. = 400% of the US median HH income 20.03565 0.17685

% population below federal poverty line* 0.86242 0.16229

Racial Composition

% non-Hispanic (NH) African Americans* 0.75122 0.15293

% foreign born 20.19410 20.08588

Residential Stability

% persons in same house no less than 5 years 20.25038 0.00338

% residents aged 65 years and over 20.15917 0.00100

Proportion of total variance explained 44.1%

Cronbach’s Alpha (internal consistency) 0.93

1White collar includes management, professional, and related occupations;
{% female headed HH with dependent children (no husband present with own children under 18 years;
*variables selected to compute the socioeconomic deprivation score.
doi:10.1371/journal.pone.0043000.t001
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computed the spatial accessibility for each year and applied the 5-

year average as the final spatial accessibility score.

Neighborhood Socioeconomic Deprivation
It is well-known that women have lower screening mammog-

raphy use in neighborhoods with more socioeconomic (SES)

deprivation [26]. In this study, we regarded neighborhood

socioeconomic deprivation as a potential neighborhood confound-

er. Referring to our previous study [27], we selected 21 Census

variables from 2000 U.S. Census in six domains to construct a

composite Census block group-level socioeconomic deprivation

index using a multivariate approach. These domains included

education, occupation, housing conditions, income and poverty,

racial composition, and residential stability (Table 1). A common

factor analysis with varimax rotation was applied to construct a

deprivation factor from the 21 Census variables. Variables with

significantly larger factor loading on the deprivation factor were

selected to build the socioeconomic deprivation index and its

internal consistency was evaluated using Cronbach’s alpha

coefficient.

Statistical Analysis
To capture differences in the characteristics of the nine GIS-

based measures, we performed the analyses in three aspects. First,

we calculated Spearman rank correlation coefficients to compare

their simple correlations. Second, we categorized all nine GIS-

based measures into quartiles and computed weighted Kappa

coefficients to examine their agreements. Quartiles reduce the

effect of high and low prevalence on the Kappa coefficient [28].

The Kappa agreement was differentiated using a commonly cited

scale: k,0, no agreement; k= 0.01–0.20, slight agreement;

k= 0.21–0.40, fair agreement; k= 0.41–0.60, moderate agree-

ment; k= 0.61–0.80, substantial agreement; k.0.80, perfect

agreement [29]. Third, we computed global Moran’s I indexes

to compare differences in spatial autocorrelation, while we also

performed Anselin local Moran’s I tests to contrast their spatial

patterns of these nine GIS-based measures. We specified the

neighborhood relationship using the ‘‘Inverse Distance’’ weight

function to obtain Moran’s I statistics. All spatial features are

assumed to impact on one another, but the farther away a feature

is, the smaller influence it has [30]. The global Moran’s I index is a

spatial autocorrelation measure (feature similarity) ranging from

21 to 1. A value closer to 1 for Moran’s I index suggests a more

clustered global spatial pattern, while a value closer to 21 suggests

a more dispersed global spatial pattern. A completely random

spatial pattern exists when Moran’s I is zero [30]. Anselin local

Moran’s I test is a tool to identify contiguous neighborhoods with

values similar in magnitude (either high or low) and spatial outliers

[30]. A spatial outlier indicates that a local region with high value

is surrounded by neighborhoods with significantly low values, or

vice versa.

As an indicator of predictive validity, we examined the

associations of nine GIS-based measures with neighborhood risk

of late-stage breast cancer. We applied a generalized linear mixed

model to fit the multilevel logistic regression. All breast cancer

cases were nested within their residential census block groups. The

nine spatial accessibility measures and the socioeconomic depri-

vation index were dichotomized to below and above the median to

facilitate interpretation. To examine the effect of spatial accessi-

bility on late-stage breast cancer and the impact of neighborhood

socioeconomic deprivation, we fitted the models in three ways.

First, we used multivariate models that were adjusted for

demographics and neighborhood socioeconomic deprivation to

examine the independent effect of spatial accessibility. Second, we

used jointly-classified models by combining the two categories of

spatial accessibility and the two categories of neighborhood

socioeconomic deprivation into one variable with four categories,

which examines nonlinear effects of the combination of both

variables. Third, we used stratified models in which the effect of

spatial accessibility was examined in each stratum of neighbor-

Table 2. Distribution of nine GIS-based measures in St. Louis.

Variable Mean STD Min P25 Median P75 Max IQR Range

Nearest facility

DSTa 4.31 2.41 0.23 2.61 3.87 5.44 18.30 2.84 18.06

DST5b 6.37 2.52 1.16 4.56 6.11 7.50 20.68 2.94 19.52

Service density

DESc 12.70 11.37 1.76 6.52 9.79 15.96 236.00 9.44 234.24

Spatial accessibility

SAUd 16.15 1.33 8.77 14.88 16.01 17.64 17.64 2.77 8.87

SACe 16.39 3.20 3.42 14.67 15.45 18.96 23.26 4.30 19.84

SA3Qf 16.50 4.32 2.57 14.23 15.87 18.94 28.04 4.71 25.47

SA3Sg 16.41 3.41 4.21 14.58 15.87 18.73 24.40 4.14 20.19

SA6Qh 16.63 5.65 1.10 13.46 15.66 19.92 33.61 6.45 32.51

SA6Si 16.31 2.49 5.51 14.81 15.42 18.57 21.40 3.76 15.89

a: shortest travel time (minutes);
b: average travel time to the nearest five facilities (minutes);
c: service density;
d: spatial accessibility index from the model without weighting parameter;
e: spatial accessibility index from the model with continuous weighting parameter;
f: spatial accessibility index from the zonal weighted model with 3 time zones and quick decay weighting;
g: spatial accessibility index from the zonal weighted model with 3 time zones and slow decay weighting;
h: spatial accessibility index from the zonal weighted model with 6 time zones and quick decay weighting;
i: spatial accessibility index from the zonal weighted model with 6 time zones and slow decay weighting.
doi:10.1371/journal.pone.0043000.t002
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Figure 1. Distribution of nine GIS-based measures in access to mammography in St. Louis.
doi:10.1371/journal.pone.0043000.g001

Table 3. Spearman correlations between nine GIS-based measures in access to mammography in St. Louis.

DST DST5 DES SAU SAC SA3Q SA3S SA6Q SA6S

DST 1.00 0.8448 0.1320 0.1633 20.2431 20.3160 20.2291 20.4060 20.1678

DST5 - 1.00 0.0764 0.0867 20.4083 20.4846 20.3889 20.5797 20.3183

DES - - 1.00 0.5064 0.3765 0.3351 0.3819 0.2857 0.4114

SAU - - - 1.00 0.7751 0.6914 0.7782 0.6060 0.8302

SAC - - - - 1.00 0.9514 0.9703 0.9343 0.9769

SA3Q - - - - - 1.00 0.9838 0.9722 0.9448

SA3S - - - - - - 1.00 0.9326 0.9807

SA6Q - - - - - - - 1.00 0.8963

SA6S - - - - - - - - 1.00

(DST: shortest travel time; DST5: average of 5 shortest travel time; DES: density; SAU: spatial accessibility index from the model without weighting parameter; SAC:
spatial accessibility index from the model with continuous weighting parameter; SA3Q: spatial accessibility index from the zonal weighted model with 3 time zones and
quick decay weighting; SA3S: spatial accessibility index from the zonal weighted model with 3 time zones and slow decay weighting; SA6Q: spatial accessibility index
from the zonal weighted model with 6 time zones and quick decay weighting; SA6S: spatial accessibility index from the zonal weighted model with 6 time zones and
slow decay weighting.); all coefficients are statistically significant.
doi:10.1371/journal.pone.0043000.t003
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hood socioeconomic deprivation, which examines the interaction

between both variables. Scaled deviance was used to evaluate the

goodness-of-fit of model fitting with smaller value indicating a

better fitting.

The data were managed and analyzed using SAS (Version 9.2,

SAS Institute Inc., Cary, NC). Global and local Moran’s I analyses

were computed using ArcGIS spatial statistics tools package and

GIS mapping were performed in ArcMap (ArcGIS, Version 9.3.1,

ESRI Inc., Redlands, CA).

Results

Service density measures had a much broader range than

measures using shortest travel time(s) and 2SFCA methods

(Table 2). The spatial pattern of neighborhood accessibility to

mammography service using different spatial methods is shown in

Figure 1. For the 2SFCA measures, the methods with distance

decay weighting showed a larger variation and broader spatial

accessibility ranges (Table 1 and Figure 1) compared to the un-

weighted method (SAU vs. SAC, SA3Q, SA3S, SA6Q and SA6S),

while quicker zonal-weighting made the SA structure broader than

slower zonal-weighting (SA3Q vs. SA3S and SA6Q vs. SA6S).

The principal components common factor analysis identified

the first common factor as the deprivation factor which explained

44.1% of the total variance. The nine Census variables, with large

factor loading on the deprivation factor, included the percentage

of civilian labor force unemployed, the percentage of vacant

households, the percentage of households with no less than one

person per room, the percentage of female headed households

with dependent children, the percentage of households with public

assistance income, the percentage of households with no vehicle,

the percentage of households with no phone, the percentage of

population below federal poverty line, and the percentage of non-

Hispanic African Americans. These nine Census variables

indicated a high internal consistency (Cronbach’s alpha = 0.93,

Table 1).

The distributions of nine GIS-based measures are skewed.

Although the correlation of all GIS-based measures are statistically

significant, Spearman rank correlation coefficients showed that

measures of shortest travel time(s) have low correlations with service

density measure 0.076, = rho, = 0.132) and slightly higher

correlations with 2SFCA measures (0.087, = rho, = 0.580). Ser-

vice density measures are moderately correlated with 2SFCA

measures. 2SFCA measures are highly correlated (rho. = 0.606) as

shown Table 3.

Table 4 showed the Kappa coefficients of nine GIS-based

measures. Measures of shortest travel time (s) have no agreement

with service density measure (k,0), and slight agreement with

2SFCA measures (k, = 0.23), while service density has slight or

fair agreement with 2SFCA measures (k,0.40). The 2SFCA

measures have higher agreement with each other (k= 0.48–0.90).

Global Moran’s I indicated that measures of shortest time(s)

have medium spatial autocorrelation (Moran’s I = 0.42 in DST

and Moran’s I = 0.48 in DST5), while service density has a low

spatial autocorrelation (Moran’s I = 0.12). Unweighted 2SFCA

Table 4. Weighted Kappa (95% confidence intervals) for nine GIS-based measures of access to mammography in St. Louis.

DST DST5 DES SAU SAC SA3Q SA3S SA6Q

DST - - - - - - - -

DST5 0.65 (0.62, 0.68) - - - - - - -

DES 20.11 (20.15, 20.07) 20.08 (20.12,
20.04)

- - - - - -

SAU 20.11 (20.15, 20.07) 20.06 (20.11,
20.02)

0.32 (0.28, 0.36) - - - - -

SAC 0.10 (0.06, 0.15) 0.18 (0.13, 0.22) 0.26 (0.22, 0.30) 0.61 (0.58, 0.64) - - - -

SA3Q 0.15 (0.11, 0.20) 0.25 (0.21, 0.29) 0.24 (0.20, 0.29) 0.52 (0.49, 0.55) 0.82 (0.80, 0.84) - - -

SA3S 0.10 (0.05, 0.14) 0.18 (0.14, 0.22) 0.26 (0.22, 0.30) 0.58 (0.55, 0.61) 0.84 (0.82, 0.86) 0.90 (0.88, 0.91) - -

SA6Q 0.23 (0.18, 0.27) 0.33 (0.29, 0.37) 0.19 (0.14, 0.23) 0.48 (0.44, 0.51) 0.79 (0.77, 0.82) 0.87 (0.85, 0.89) 0.78 (0.75, 0.80) -

SA6S 0.03 (20.01, 0.07) 0.10 (0.06, 0.14) 0.30 (0.26, 0.34) 0.66 (0.63, 0.68) 0.87 (0.86, 0.89) 0.81 (0.79, 0.83) 0.89 (0.88, 0.91) 0.71 (0.68, 0.74)

(DST: shortest travel time; DST5: average of 5 shortest travel time; DES: density; SAU: spatial accessibility index from the model without weighting parameter; SAC:
spatial accessibility index from the model with continuous weighting parameter; SA3Q: spatial accessibility index from the zonal weighted model with 3 time zones and
quick decay weighting; SA3S: spatial accessibility index from the zonal weighted model with 3 time zones and slow decay weighting; SA6Q: spatial accessibility index
from the zonal weighted model with 6 time zones and quick decay weighting; SA6S: spatial accessibility index from the zonal weighted model with 6 time zones and
slow decay weighting.)
doi:10.1371/journal.pone.0043000.t004

Table 5. Global Moran’s I of nine GIS-based measures in
access to mammography in St. Louis.

Variable Moran’s I (95% CI)

DST 0.42 (0.41–0.42)

DST5 0.48 (0.47–0.49)

DES 0.12 (0.11–0.13)

SAU 0.71 (0.71–0.72)

SAC 0.47 (0.46–0.47)

SA3Q 0.43 (0.43–0.44)

SA3S 0.45 (0.44–0.45)

SA6Q 0.44 (0.43–0.45)

SA6S 0.50 (0.49–0.51)

(DST: shortest travel time; DST5: average of 5 shortest travel time; DES: density;
SAU: spatial accessibility index from the model without weighting parameter;
SAC: spatial accessibility index from the model with continuous weighting
parameter; SA3Q: spatial accessibility index from the zonal weighted model
with 3 time zones and quick decay weighting; SA3S: spatial accessibility index
from the zonal weighted model with 3 time zones and slow decay weighting;
SA6Q: spatial accessibility index from the zonal weighted model with 6 time
zones and quick decay weighting; SA6S: spatial accessibility index from the
zonal weighted model with 6 time zones and slow decay weighting.)
doi:10.1371/journal.pone.0043000.t005
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measure has a strong spatial autocorrelation (Moran’s I = 0.71)

and other 2SFCA measures have medium spatial autocorrelation

(Moran’s I = 0.43–0.50) (Table 5). Anselin local Moran’s I tests

exhibited considerable differences in spatial pattern of nine GIS-

based measures (Figure 2). The area with high access based on

shortest travel time(s) measures were located mainly in the east-

central part of the study area, but in the study area’s central part

for the 2SFCA measures. The service density measures showed

smaller cluster areas compared to other measures.

Table 6 shows the effects of the nine spatial accessibility

measures on the odds of late-stage breast cancer. The measure

using the shortest travel time (multivariate odds ratio [OR] = 0.99,

95% confidence interval [CI]: 0.86–1.14), average of first five

shortest travel time (multivariate OR = 0.95, 95% CI: 0.83–1.09),

and service density (multivariate OR = 0.90, 95% CI: 0.79–1.04)

were not associated with late-stage breast cancer. However, lower

values on the spatial accessibility indices using the 6-timezone

weighted methods were significantly associated with increased

odds of late-stage breast cancer (SA6Q, age-race-adjusted OR:

1.16, 95% CI: 1.01–1.32; SA6S, age-race-adjusted OR: 1.21, 95%

CI: 1.05–1.39). In the multivariable model, spatial accessibility

index remained associated with late-stage breast cancer (SA6Q,

OR: 1.15, 05% CI: 1.01–1.32; SA6S, OR: 1.19, 95% CI: 1.03–

1.37). The effect of neighborhood socioeconomic deprivation

disappeared after controlling for age, race and neighborhood

spatial accessibility (more deprived vs. less deprived: age-adjusted

OR: 1.31, 95% CI: 1.13–1.51; age-race-adjusted OR: 1.19, 95%

CI: 1.00–1.42; multivariate-adjusted OR: 1.15, 95% CI: 0.96–

1.37).

Table 7 shows the combined effects of spatial accessibility and

neighborhood socioeconomic deprivation on late-stage breast

cancer. The odds of late-stage breast cancer in neighborhoods

with lower spatial accessibility to mammography service and more

socioeconomic deprivation was elevated (SA6Q, OR: 1.34, 95%

CI: 1.07–1.69; SA6S, OR: 1.32, 95% CI: 1.07–1.64). The

stratified models show that lower spatial accessibility to mammog-

raphy service was associated with greater odds of late-stage breast

cancer in less deprived neighborhoods (SA6Q, OR: 1.19, 95% CI:

1.02–1.40; SA6S, OR: 1.27, 95% CI: 1.07–1.50), but not in more

deprived neighborhoods (SA6Q, OR: 1.06, 95% CI: 0.84–1.35;

SA6S, OR: 1.04, 95% CI: 0.81–1.32).

Discussion

Our main purpose was to compare varied GIS-based measures

of access to mammography service computed using three different

spatial approaches, and we also determined the predictive validity

in their association with odds of late-stage breast cancer. Our study

Figure 2. Spatial patterns (Anselin local Moran’s I tests) of nine GIS-based measures in access to mammography in St. Louis.
doi:10.1371/journal.pone.0043000.g002
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demonstrated that the correlation and agreement among the

different measures (shortest travel time, service density and 2SFCA

measures) was low. Also, the spatial pattern of the measures varied

considerably. Only measures using the 6-timezone-weighted

2SFCA method were significantly associated with increased

neighborhood odds of late-stage breast cancer after accounting

for demographics and neighborhood socioeconomic deprivation.

The effect of neighborhood socioeconomic deprivation could be

explained in part by neighborhood spatial accessibility. Combined

with more deprived neighborhood socioeconomic condition, lower

spatial accessibility to mammography service is associated with

greater neighborhood risk of late-stage breast cancer.

Service availability or density is the most common measure in

assessing spatial accessibility due to its easy computation

[3,4,5,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48]. It

does not require advanced GIS skills, and only need to link each

service location to its corresponding neighborhood or a predefined

buffered area in which that service facility is located. With the

rapid development of GIS techniques, it also becomes convenient

to compute the network-based distance based on a GIS road

network layer. This results in the frequently used measure of the

shortest travel time (or nearest travel distance) to the service

locations for assessing service accessibility [6,7,10,11,12,14,49,50,

51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67]. Recently, it

has become feasible to create a composite accessibility index using

a state-of-the-art two-Step Floating Catchment Area (2SFCA)

approach. This approach is more reasonable than availability/

density and nearest travel distance/shortest travel time through

the integration of travel barrier and service competition, however,

it is a more sophisticated technique requiring several sequential

steps: first, one needs to compute a travel distance/time matrix

between service location and population locations within a

predefined catchment area using a GIS, such as ArcGIS Network

Analyst. If a study involves large numbers of study neighborhoods

and participant locations, this process could be very time-

consuming. Second, one needs to compute the population-service

ratio for each service location and then a composite accessibility

score for each population location using statistical derivations with

varied weighting techniques, such as the Enhanced 2SFCA

method [18] and the Gaussian 2SFCA method [19]. Additionally,

some efforts to improve the technical precision of the 2SFCA

method make this approach more complex. Luo and Whippo

explored an approach to reduce the bias due to the rural-urban

difference through using predefined base population threshold and

service-to-population ratio threshold to create varied catchment

sizes for each service location and population location instead of

fixed catchment size (fixed travel time or distance) [20]. Recently,

Bell and Bissonnette et al developed an extension of the 2SFCA

method, called the 3SFCA, aggregating the small-area spatial

accessibility score to a larger study neighborhood [21,68]. Both

methods could substantially improve the measurement precision

and reduce the influence of the rural-urban difference especially

when the study area is large or irregular, meanwhile, they also add

considerable computational burden if the study sample size is

large. In the former approach, the travel distance/time matrix

need to be computed under a much larger range, such as 30-

minute travel, even 60- or 90-minute travel time, to capture the

specific catchment sizes of each service and population location,

while the latter one requires an additional step to obtain the

accessibility measure.

Briefly, for most researchers, service availability/density and

nearest travel distance/shortest travel time are easier to compute

despite the fact that travel barriers or service competition is

ignored. In contrast, the 2SFCA and its extended methods are

more technical and require stronger computation skill to perform

although this approach has methodological advantages. Therefore,

it is necessary to compare these GIS-measures in principle and

predictive validity for a specific study outcome. If no significant

difference, service availability/density and/or nearest travel

distance/shortest travel time could be applied instead of more

complex 2SFCA approaches. Otherwise, it may be a better way to

apply more advanced 2SFCA approach. It is noteworthy that, for

the 2SFCA approach, the number of time zones and decay

weighting parameters should be evaluated for different study

outcomes. In our study, more time zones worked better while

decay did not seem to play a role. In addition, for a study with

large mixed area characteristics, rural-urban difference, such as

different catchment sizes, may be considered when assessing

spatial accessibility, including the application of varied catchment

sizes [20] or the aggregation of small-area accessibility measures to

larger neighborhoods [21].

Table 6. Effects of block group spatial accessibility to
mammography service and socioeconomic (SES) deprivation
on risk of late-stage breast cancer.

Odds Ratio (95% CI)*

Model I Model II Model III

CSTa 0.97 (0.84 to 1.11) 0.97 (0.85 to 1.11) 0.99 (0.86 to 1.14)

SES - - 1.19 (1.00 to 1.42)

CST5b 0.92 (0.80 to 1.05) 0.93 (0.81 to 1.07) 0.95 (0.83 to 1.09)

SES - - 1.18 (0.99 to 1.41)

DENc 0.89 (0.77 to 1.02) 0.90 (0.78 to 1.03) 0.90 (0.79 to 1.04)

SES - - 1.19 (1.00 to 1.42)

SAUd 1.23 (1.07 to 1.41) 1.15 (1.00 to 1.33) 1.12 (0.96 to 1.30)

SES - - 1.15 (0.96 to 1.38)

SACe 1.16 (1.01 to 1.33) 1.12 (0.98 to 1.28) 1.11 (0.97 to 1.27)

SES - - 1.18 (0.99 to 1.41)

SA3Qf 1.13 (0.99 to 1.30) 1.09 (0.96 to 1.25) 1.09 (0.95 to 1.25)

SES - - 1.19 (1.00 to 1.42)

SA3Sg 1.14 (1.00 to 1.31) 1.10 (0.96 to 1.26) 1.08 (0.95 to 1.24)

SES - – 1.18 (0.99 to 1.41)

SA6Qh 1.19 (1.04 to 1.36) 1.16 (1.01 to 1.32) 1.15 (1.01 to 1.32)

SES - - 1.19 (1.00 to 1.42)

SA6Si 1.26 (1.10 to 1.45) 1.21 (1.05 to 1.39) 1.19 (1.03 to 1.37)

SES - - 1.15 (0.96 to 1.37)

SES 1.31 (1.13 to 1.51) 1.19 (1.00 to 1.42) -

Model I was adjusted for age only; Model II was adjusted for age and race;
Model III included spatial accessibility score, socioeconomic score, age and race.
*Higher spatial accessibility and less deprivation were set as references;
a: shortest travel time (minutes);
b: average travel time to the nearest five facilities (minutes);
c: service density;
d: spatial accessibility index from the model without weighting parameter;
e: spatial accessibility index from the model with continuous weighting
parameter;
f: spatial accessibility index from the zonal weighted model with 3 time zones
and quick decay weighting;
g: spatial accessibility index from the zonal weighted model with 3 time zones
and slow decay weighting;
h: spatial accessibility index from the zonal weighted model with 6 time zones
and quick decay weighting;
i: spatial accessibility index from the zonal weighted model with 6 time zones
and slow decay weighting.
doi:10.1371/journal.pone.0043000.t006
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Table 7. Combined effect of block group spatial accessibility to mammography service and socioeconomic (SES) deprivation on
risk of late-stage breast cancer.

Odds Ratio (95% CI)

Socioeconomic Condition SA measures Joint-Classified Stratified

Model 1: CSTa

Less deprived

More accessible 1.00 1.00

Less accessible 1.03 (0.87 to 1.22) 1.03 (0.87 to 1.22)

More deprived

More accessible 1.26 (0.99 to 1.60) 1.00

Less accessible 1.17 (0.91 to 1.49) 0.92 (0.73 to 1.17)

Model 2: CST5b

Less deprived

More accessible 1.00 1.00

Less accessible 0.97 (0.82 to 1.15) 0.97 (0.82 to 1.15)

More deprived

More accessible 1.23 (0.97 to 1.56) 1.00

Less accessible 1.11 (0.87 to 1.42) 0.91 (0.72 to 1.15)

Model 3: DENc

Less deprived

More accessible 1.00 1.00

Less accessible 0.82 (0.69 to 0.97) 0.82 (0.69 to 0.97)

More deprived

More accessible 0.99 (0.78 to 1.27) 1.00

Less accessible 1.10 (0.88 to 1.38) 1.11 (0.87 to 1.41)

Model 4: SAUd

Less deprived

More accessible 1.00 1.00

Less accessible 1.15 (0.96 to 1.39) 1.15 (0.96 to 1.39)

More deprived

More accessible 1.20 (0.95 to 1.51) 1.00

Less accessible 1.27 (1.03 to 1.57) 1.06 (0.83 to 1.36)

Model 5: SACe

Less deprived

More accessible 1.00 1.00

Less accessible 1.15 (0.97 to 1.36) 1.15 (0.97 to 1.36)

More deprived

More accessible 1.25 (0.99 to 1.57) 1.00

Less accessible 1.27 (1.02 to 1.59) 1.02 (0.80 to 1.30)

Model 6: SA3Qf

Less deprived

More accessible 1.00 1.00

Less accessible 1.15 (0.98 to 1.35) 1.15 (0.98 to 1.35)

More deprived

More accessible 1.30 (1.03 to 1.64) 1.00

Less accessible 1.26 (1.00 to 1.57) 0.96 (0.76 to 1.23)

Model 7: SA3Sg

Less deprived

More accessible 1.00 1.00

Less accessible 1.17 (0.99 to 1.37) 1.17 (0.99 to 1.37)

More deprived
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Our study indicated that the GIS-based measures of spatial

accessibility exhibit different characteristics. The findings suggest

that the weighted 2SFCA method is better than service density and

shortest travel time when assessing spatial accessibility to

mammography service. Future studies should further investigate

and improve the 2SFCA methods and compare GIS-based

measures with perceived accessibility when assessing neighbor-

hood effect of the distribution of mammography service.

Appropriate assessment could reduce bias when investigating the

effect of spatial accessibility on breast cancer outcomes. Addition-

ally, precise and reliable measures of spatial accessibility to

mammography cannot only provide justification for effective

multilevel interventions, but also help local and state policy makers

and health service planners identify service shortage areas to

mammography and improve the allocation of mammography

services to reduce geographic disparity in breast cancer-related

outcomes that appears to exist in community settings. The

selection of GIS-based measures can be extended to other areas

of public health, including accessibility to other medical services,

the food environment, and alcohol or cigarettes sale environments

[33,43,48,57,62,66].

There are several strengths to our study. We computed nine

GIS-based measures of access to mammography services using

three different spatial approaches, including shortest travel time,

service density and the 2SFCA method, and systematically

compared their correlation, agreement and spatial pattern within

a single study region and population. The 2SFCA approach with

more time zone-weighting appears to capture more details in

spatial pattern and significant or stronger association of spatial

accessibility to mammography service with late-stage breast

cancer. We applied the number of mammography machines as

the service capacity and the population of women age 40 and

above as the screening-eligible population. We also used the

Census block group as the geographic unit which is much smaller

than Zip code and can lead to a more precise measurement of

accessibility.

Our study also has some limitations. First, our findings may only

be generalized to a metropolitan area. Results may be different

when examining more rural areas [18]. Second, the estimation of

spatial accessibility for block groups at the edge of the study area

boundary could have been underestimated since we did not

include facilities outside the study area. However, this is unlikely to

have affected our findings because there was only one mammog-

raphy facility near the Missouri river. On the west-side and east-

side of the study area, the Missouri river and Mississippi river

formed a natural boundary. Third, except for age and race, our

study did not include other individual-level factors that are

associated with late-stage breast cancer, such as marital status, low

education, unemployment, health insurance coverage, non-

participation in regular general health check-up, low interest in

health issues and diagnostic delay [69,70,71,72,73]. Additionally,

our study assumed that all women with the same travel time had

equal opportunity to access a mammography facility, that all

facilities had similar quality of provided services, and that each

Table 7. Cont.

Odds Ratio (95% CI)

Socioeconomic Condition SA measures Joint-Classified Stratified

More accessible 1.32 (1.05 to 1.65) 1.00

Less accessible 1.23 (0.98 to 1.53) 0.93 (0.73 to 1.18)

Model 8: SA6Qh

Less deprived

More accessible 1.00 1.00

Less accessible 1.19 (1.02 to 1.40) 1.19 (1.02 to 1.40)

More deprived

More accessible 1.26 (1.00 to 1.59) 1.00

Less accessible 1.34 (1.07 to 1.69) 1.06 (0.84 to 1.35)

Model 9: SA6Si

Less deprived

More accessible 1.00 1.00

Less accessible 1.27 (1.07 to 1.50) 1.27 (1.07 to 1.50)

More deprived

More accessible 1.27 (1.01 to 1.61) 1.00

Less accessible 1.32 (1.07 to 1.64) 1.04 (0.81 to 1.32)

All models were adjusted for age and race; ‘‘more accessible’’ means shorter travel time and bigger score values in density and 2SFCA measures, while ‘‘less accessible’’
means longer travel time and smaller score values in density and 2SFCA measures.
a: shortest travel time (minutes);
b: average travel time to the nearest five facilities (minutes);
c: service density;
d: spatial accessibility index from the model without weighting parameter;
e: spatial accessibility index from the model with continuous weighting parameter;
f: spatial accessibility index from the zonal weighted model with 3 time zones and quick decay weighting;
g: spatial accessibility index from the zonal weighted model with 3 time zones and slow decay weighting;
h: spatial accessibility index from the zonal weighted model with 6 time zones and quick decay weighting;
i: spatial accessibility index from the zonal weighted model with 6 time zones and slow decay weighting.
doi:10.1371/journal.pone.0043000.t007
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mammography radiologist in each mammography facility had

equal capacity to read mammography films. Women with lower

income or without health insurance coverage might seek

mammography service from safety net providers even if these

locations might be farther and have lower quality services than

other facilities. Regardless of these limitations, our findings provide

helpful information to policy makers about where accessibility to

needed mammography services is lower and counteract this in

order to reduce the odds of late-stage breast cancer diagnosis.

Future studies could include additional risk factors and service

facility characteristics to validate the independent effect of spatial

accessibility to mammography service.

In conclusion, different GIS-based measures appear to describe

different concepts based on their intercorrelations, agreements and

spatial patterns. Caution should be exercised in selecting a spatial

approach in assessing access to mammography when investigating

neighborhood contextual effects on breast cancer outcomes. The

2SFCA measure appears to be the best approach based on

theoretical considerations, spatial patterns and predictive validity.

Our findings suggest that the 2SFCA approach can be a valuable

option for epidemiologists when investigating the health effects of

the distributions of regional accessibility to services.
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